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Abstract A theoretical analysis of bacteriochlorophyll a
containing its non-native divalent metal ions: Co, Ni, Cu,
Zn, Ru, Rh, Pd, and Pt, has been carried out by means of
density functional theory (DFT) calculations. The main
stress was put on the derivatives with metals, which already
found applications as coordination compounds in anti-tumor
therapy (Ru, Pt, Pd, and Rh). The idea was to combine their
cytotoxic properties with the known suitability of bacterio-
chlorophylls macrocycle for photodynamic therapy. The
geometries of the studied systems are compared and reveal
a number of similarities. The cores of the modified bacter-
iochlorophylls are flat, and the introduced metal ions lie in
plane of the macrocycle, showing its large ability to accom-
modate metal ions of different sizes. However, four metal–
nitrogen bonds, linking the central ions with the macrocycle
ligand, are not equivalent. Metals are the strongest attached
to nitrogens, which come from the pyrrole, which is fused
with isocyclic ring. Based on the known spectroscopic data,
the absorption properties of the proposed systems are pre-
dicted. Finally, it is found that all studied metal–macrocycle
adducts are stable in aqueous media. The only exceptions
are Mg-BChla (the finding is reflected by experimental
facts) and Zn-BChla. The predicted high stability of Ru-,
Rh-, Pt- and Pd-bacteriochlorophylls might turn out benefi-
cial for therapeutic purposes.
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Introduction

Photodynamic therapy (PDT) is one of the methods to cure
cancer, which uses the combination of a drug (called a photo-
sensitizer) and a light [1–3]. Upon irradiation with the light of
an appropriate wave-length, the photosensitizer is excited
from its ground state (usually singlet) to the excited state - at
first singlet, which may subsequently undergo conversion to
triplet through inter-system crossing. The excess energymight
then be transferred to nearby oxygen molecules and excite
them from triplet ground state to singlet, thus producing
highly reactive species, able to damage living cells. Other-
wise, the excitation energy might be dissipated in a form of
heat, causing cell damage through over-heating. At the end,
the photosensitizer returns to its ground state.

The working principle of the photodynamic therapy
implies several requirements, which should be fulfilled by
good photosensitizers [2]. They should effectively absorb
light in the range appropriate for medical applications, i.e.,
620–850 nm, preferably red-shifted. Inversely, their absorp-
tion in the range 400–600 nm should be low in order to
avoid prolonged skin sensitivity to the sunlight. Next, the
efficiency of singlet to triplet intersystem crossing should be
enhanced, which is usually achieved through incorporation
of a metal ion into its structure. For the good candidates, it is
sought that the singlet-triplet energy gap is higher than the
energy needed to excite molecular oxygen (ca 1 eV). Last
but not least, a high stability of these drugs is needed, both
thermodynamic and photostability, as well as their low
toxicity in the dark.

The application of porphyrin-based photosensitizers (por-
phyrins, texaphyrins, chlorins and bacteriochlorins) as agents
for photodynamic therapy has draw attention in the last couple
of years due to their good light-absorbing properties.

Synthetic porphyrins, hematoporphyrins and their ana-
logues served as first photosensitizers, but they showed a
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number of drawbacks [4], among which were high retention
times in living organisms, causing prolonged skin sensitivity
to light and relatively low absorption, resulting in the need
of the increased doses. Nowadays the researchers focus
rather on the naturally occurring porphyrins, e.g., chloro-
phylls and bacteriochlorophylls [5, 6], as these have shorter
retention times and their decomposition pathways are al-
ready established. Among different derivatives of porphyr-
ins, bacteriochlorophylls offer remarkable properties, which
are mainly due to the fact that their absorption spectrum is
considerably red-shifted.

Therefore the current research concentrates on modifica-
tions of structure and properties of the native bacteriochlor-
ophylls (and chlorophylls), which might be important for
medical applications, and allow to over-come known draw-
backs of synthetic photosensitizers.

The replacement of the central magnesium ion for a
heavy element ameliorates photophysical behavior of these
pigments by enhancing singlet-triplet intersystem crossing
due to spin-orbit coupling [7]. Another modification may
cover the existing side chains, substituting the macrocycle
core. For instance, it is shown that the lack of phytyl (a C20

alcohol moiety attached to chlorophylls and bacteriochlor-
ophylls) ameliorates their solubility in aqueous media [8].

On the other hand, a number of transition metal ions in
form of their complexes found application in anti-tumor
therapy [9]. Platinum(II) complexes are the parent drugs,
as they are used for chemotherapy against, e.g., lung and
bladder cancers [10]. The second widely known transition
metal in this area is ruthenium. In this context, usually Ru
(III) salts are studied [11], however, it is believed that in
organisms Ru(III) undergoes reduction to Ru(II) with ascor-
bic acid or other reductants [12, 13]. Among others, Pd(II)
and Rh(II) are also popular and offer new possibilities for
treating new types of cancer cells [9].

It seems to be desirable that these two aspects of metal-
containing compounds are combined in a single molecule,
which may act in two different ways to fight cancer cells.
Therefore, the idea to use Pt, Ru, Pd, and Rh substituted
bacteriochlorophylls appears tempting. On the one hand, the
absorption properties of bacteriochlorophylls would be used
in standard PDT, while on the other hand the anticancer
properties of the metal ions will be employed after the
treatment with light.

Consequently, the aim of the present study is to charac-
terize different metallo-substituted bacteriochlorophylls, as
possible candidates for photodynamic therapy. Special at-
tention is paid to derivatives, which contain transition metal
ions, whose anti-tumor activity is known and new systems,
in which they may render useful, are sought. Additionally,
the set of tested metals is enlarged by Mg (a native metal in
bacteriochlorophyll), Co, Ni, Cu, Zn. The selection of the latter
follows from the availability of spectroscopic characterization

of their bacteriochlorophyll derivatives [6], made in relation to
the possible application of these species in photodynamic
therapy.

Studies of similar nature might be found in literature. The
most extensive studies of different possible photosensitizers –
derivatives of porphyrin and texaphyrin with and without
central magnesium atom for use in PDT are published by
Russo and his co-workers [14–16]. Additionally, the se-
lected adducts of bacteriochlorins with metals of the first
transition row are characterized and their spectral proper-
ties are discussed in detail [17]. The main stress was put
on the characterization of their absorption spectra, which
were rationalized with an aid of time-dependent density
functional theory.

The present research is focused on the adducts with
metals, which already found application in anti-cancer ther-
apy. In this respect our study covers a different range of
tested metal ions than in Russo’s studies. Moreover, the
macrocyclic ligand, which is used throughout the present
study, contains the naturally occurring bacteriochlorin ring
substituents, thus they may be synthetized on the base of
natural materials.

One should mention that the theoretical studies of the
spectroscopic properties of the native chlorophylls and bac-
teriochlorophylls are also published (e.g., [18–21]), but they
were undertaken rather in order to elucidate the details of the
light absorption in photosynthesis, and not in view of their
potential applications in PDT. An interested reader should
be referred to the extensive reviews [20, 22, 23] and refer-
ences therein.

Methods and model

In the present study quantum chemical method based on
density functional theory (DFT) with non-local Becke-
Perdew functional was applied [24–28]. The calculation
consisted of full geometry optimizations of the studied
structures and was further confirmed with vibrational anal-
ysis. In order to accelerate computation the resolution-of-
identity (RI) algorithm was applied [29, 30]. All-electron
Gaussian type orbitals of def2-TZVP quality were used to
define atomic orbitals [31], while effective core potentials
were applied for heavy elements (Ru, Rh, Pd, and Pt). The
solvation was accounted for by COSMO model [32] with
default radii for the elements (H=1.30, C=2.00, N=1.83,
O=1.72) and 2.00 Å for the studied metal ions. Dielectric
permittivity ε equal to 80 was used in order to take into
account the nature of the possible aqueous environment in
which these potential therapeutic agents will appear in tis-
sues. The present results were obtained with Turbomole v.
6.3 [33] and further analyzed with AOMix 6.6 program
package [34, 35].
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The theoretical model of the studied system is shown in
Fig. 1. It consists of the bacteriochlorophyll a molecule
bearing all its native substituents, except the long phytyl
chain, which is here replaced by a hydrogen atom (so called
a bacteriopheophorbide ligand). Such a simplification of the
model is justified in light of the fact that the lack of phytyl
ameliorates solubility of bacteriochlorophyll in aqueous me-
dia and is beneficial for its prospect medical application.

In the investigated bacteriochlorophyll molecule four
pyrroles of the macrocycle are not equivalent, so the sym-
metry of the molecule is lowered to C1 as compared to C4V

in porphyrins or D2h as in bacteriochlorins. This is due to the
presence of different substituents in the macrocyle periphery
and to the fact that two of four pyrroles are saturated, while
the remaining two are not.

In the present paper eight bacteriochlorophyll derivatives
are studied, in which a native central metal ion –magnesium
- is replaced for another metal. The studied metal ions cover:
Co(II), Ni(II), Cu(II), Zn(II), Ru(II), Rh(II), Pd(II), and Pt
(II). For all of the metals + II oxidation state is common and
ensures the neutral charge of the whole system. As one may
notice, the range of the studied central metal ions is wider
than those of anti-cancer activity, outlined in the introduc-
tion. This is a result of the availability of spectroscopic data
[6], which due to structure-activity relationship models may
be compared with computed parameters and help to foresee
the properties of derivatives not characterized thus far. Such
an approach already proved useful in forecasting the
physico-chemical characteristics of different groups of mol-
ecules [36, 37].

Results and discussion

In the following, the description of the investigated bacterio-
chlorophyll derivatives is given, with an emphasis on their
structural and electronic properties. The discussion is then
shifted to the problem of the stability of the chosen metal ions
in bacteriochlorophyll cavity in aqueous environment.

Characteristics of bacteriochlorophylls containing different
central metals

The basic structural parameters obtained throughout the
present study are listed in Table 1. In all but one of the
investigated cases, the ground state of the molecules is low
spin, which is singlet or dublet, depending on the type of the
central metal ion. The only odd system is Ru-BChla, whose
triplet lies the lowest on the potential energy surface: singlet
and pentet states are higher by 0.39 eV and 1.20 eV, respec-
tively. These findings are in agreement with previous theo-
retical study, in which different transition metal ions from
the fourth period have been examined [17]. While most of
the studied systems exhibited low spin, iron-bacteriochlorin
was characterized by the intermediate spin. The similarity of
the ground state multiplicity is a consequence of the location
of the two elements in the periodic table: ruthenium lies
directly below iron.

The singlet-triplet energy separation is an important param-
eter regarding proposed application of the investigated sys-
tems for photodynamic therapy. The energy gap should be
higher than required to excite molecular oxygen to its singlet
state. In this respect both new bacteriochlorophyll derivatives,
whose ground state is singlet (with Pt and Pd), turn up suit-
able. The singlet–triplet energy separation is 1.15 eV and
1.11 eV for Pt-BChla and Pd-BChla, respectively.

The analysis of the geometries of M-BChla systems
reveal that all cores of the macrocyclic complexes are pla-
nar, independent of the type of the central metal ion. This
clearly shows the flexibility of the bacteriochlorin macro-
cycle and its ability to accommodate ions of different radii.
Out-of-plane displacement of the central metals in
porphyrin-related systems, often reported in literature, is
related strictly to the presence of additional ligands, which
pull them from the center of the macrocycle [38–40].

Four pyrroles, which constitute the core of bacterio-
chlorin, are not equivalent and so four metal–nitrogen bonds
are not of the same length. In all studied systems one may
observe a similar pattern: the shortest bond is formed with
the nitrogen from the pyrrole C, which is fused with the
isocyclic ring, while the longest with the nitrogen to which
originally phytyl is attached (pyrrole D). The remaining two
bonds are neither of the same length: the shorter connects
metal with nitrogen of pyrrole A, while the longer with
nitrogen from pyrrole B.

Fig. 1 Geometry structure of the investigated systems: central metals
(Co, Ni, Cu, Zn, Ru, Rh, Pd, and Pt) are marked in green. Enumeration of
pyrroles starts from the left hand upper corner, clock-wise from A to D
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One may then measure the size of the central cavity,
which has a shorter diameter along the line connecting
pyrroles A and C, and a larger diameter connecting pyrroles
B and D; the difference between them may reach up to 9 %,
as in Zn-BChla. The macrocycle core is the widest in Zn-
BChla (two diameters are equal to 3.969 Å and 4.327 Å),
and the tightest in Ni-BChla (3.874 Å and 3.998 Å).

One should notice then that the central metal is never
located in the exact center of the cavity, but is always shifted
toward the fragment of the macrocycle of a larger electron
density (pyrrole C fused with the isocyclic ring) [41]. This
feature is also reported by Sundholm [21] in his theoretical
studies of bacteriochlorophyll b species. It is thus due to the
presence of macrocycle substituents and the isocyclic ring.
The non-equivalency of four metal–nitrogen bonds is fur-
ther reflected by their bond orders. It should be born in
mind, however, that in real conditions the nuclear position
will not be static due to thermal vibrations. All nuclei will be
able to occupy a certain volume around the determined point
in space, and their average location will be determined by
experiment.

Next, the energies of frontier orbitals are compared. HO-
MO levels are similar and vary from -4.95 eV for Rh-BChla
to -4.83 eV for Mg-BChla, while LUMO levels vary from -
3.73 eV for Cu-BChla to -3.58 eV for Ru-BChla. Consequent-
ly, the HOMO-LUMO gaps of all the studied derivatives are
similar and fall in the range 1.15–1.35 eV. Such small differ-
ences arise from the fact that frontier orbitals are located
mostly on the macrocycle, with small contributions from

metal orbitals appearing only in LUMOs – see Supplementary
material. This finding is in line with the results obtained for
model metallobacteriochlorins, where similar character of
HOMOs and LUMOs was observed [17]. The bacteriochlo-
rophyll derivatives covered in this study have additional iso-
cyclic ring, therefore their frontier orbitals contain also its
admixture. This gives rise to the before-mentioned shifted
position of central metal ions too.

The UV–VIS spectra of a majority of the studied com-
pounds can be found in literature [6]. The analysis of the
absorption properties reveals their potential applicability for
photodynamic therapy. The Qx band is red-shifted, ensuring
the use of red light for irradiation, which penetrates deeper
into tissues than other wavelengths form the visible
spectrum.

According to our knowledge, only some of the metal-
lobacteriochlorophylls described here are characterized in
literature. An attempt is then made to somehow predict the
absorption edge based on the calculated properties of the
remaining species. In order to do so the experimental peak
positions of the adsorption band (which in the literature are
related to as Qx band) are then correlated with the HOMO-
LUMO gap. The obtained results show a linear relationship
between the two values with the correlation coefficient
equal to 0.89. The plot of the regression is shown in
Fig. 2. The calculated parameters of the regression line serve
to approximate the adsorption band of the bacteriochloro-
phyll derivatives whose spectra are not published. Therefore
it is predicted that Pt-BChla would absorb at 752 nm, Ru-

Table 1 Computed parameters
of studied metallobacteriochloro-
phylls: bond distances are in Å,
HOMO, LUMO and energy gaps
are in eV. Values in italics refer to
beta spin values. Metal exchange
energies are in kcal mol−1. Addi-
tionally, literature data are listed,
which are referred to in the man-
uscript: QX max – absorption in nm
[6], χi – Pauling electronegativity,
ri – ionic radius in Å

Metal Mg Co Ni Cu Zn Ru Rh Pd Pt

Bond distances

M-NA 2.035 1.966 1.955 1.986 1.988 2.031 2.015 2.040 2.041

M-NB 2.129 1.971 1.964 2.081 2.136 2.046 2.037 2.039 2.028

M-NC 2.021 1.932 1.919 1.965 1.981 2.000 1.983 2.004 2.009

M-ND 2.160 2.038 2.034 2.138 2.191 2.094 2.091 2.092 2.074

Bond orders

M-NA 0.589 0.710 0.728 0.732 0.713 0.659 0.706 0.592 0.687

M-NB 0.439 0.740 0.770 0.605 0.527 0.631 0.643 0.594 0.752

M-NC 0.602 0.732 0.754 0.739 0.686 0.669 0.715 0.600 0.711

M-ND 0.436 0.677 0.694 0.549 0.467 0.603 0.613 0.568 0.691

EHOMO −4.83 −4.86 −4.88 −4.89 −4.91 −4.92 −4.95 −4.92 −4.94

−4.87 −4.89 −4.89 −4.92
ELUMO −3.68 −3.69 −3.70 −3.73 −3.72 −3.58 −3.63 −3.67 −3.65

−4.31 −4.31 −4.32 −4.70
GAP 1.15 1.17 1.17 1.16 1.18 1.34 1.32 1.25 1.29

0.56 0.59 0.58 0.22

QX max 778 767 779 780 773 – – – 763

ΔEex −38.8 18.7 40.6 15.6 0.6 22.9 53.3 67.5 83.9

χi 1.31 1.88 1.91 1.90 1.65 2.20 2.28 2.20 2.28

ri 0.86 0.79 0.63 0.71 0.74 – – 0.78 0.80
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BChla at 738 nm, and Rh-BChla at 745 nm. These values
confirm the applicability of the abovementioned species to
be used as light absorbing agents in PDT.

Central metal leaching

As was already underlined, one of the main aspects during the
test process of new therapeutic agents is their stability and
toxicity. In the case of pharmaceuticals containing transition
metal ions one should consider the possibility of the central
metal leaching into the body fluids. While some of the metal
ions are neutral or even beneficial for human health in mod-
erate concentrations (here, e.g., magnesium), some are toxic
and thus may have detrimental effect on the functioning of the
body (here, e.g., cobalt or platinum). To somehow assess a
possibility of leaching of the central metal, the exchange of
central metals for protons from environment is considered as
described by the following reaction:

MBChlaþ 2H5O2
þ þ nH2O ! H2BChlaþ M H2Oð Þ4þn

� �2þ

It is assumed that two protons, which are initially solvat-
ed (each one with two water molecules), replace the central
metal ion, which forms an aqua complex afterward. The
number of aqua ligands is typical for a given metal ion
and equals six for Mg, Co, Cu, Ru, Rh and four for Zn,
Pt, Pd, Ni.

The idea to relate the metallobacteriochlorophyll stability
to the resistance toward the displacement of the central
metal by acid is generally accepted in metalloporphyrin
research [42–44]. This is because 1) it is often difficult to
determine equilibrium constants directly and 2) metallopor-
phyrins show a wide range of sensitivity to acid.

It is then proposed that the measure of the stability of the
metal-ligand adduct is the energetic cost of the abovementioned
process, calculated in aqueous phase (accounted for with

COSMO model):

ΔEex ¼ E H2BChlað Þ þ E M H2Oð Þ4þn

� �2þ� �
� E MBChlað Þ

�2E H5O2
þð Þ � nE H2Oð Þ

One should emphasize here, that the stability, as defined
in this paper, is related only to the thermodynamic property
and does not discuss the kinetic stability of the system. The
latter would be connected with the height of energy barrier
which should be overcome to reach the products.

The computed values are listed in Table 1. The analysis
of the collected data reveals that the native central atom of
bacteriochlorophyll, magnesium, is not stable in the macro-
cycle cavity. This observation is not surprising, as the low
stability of magnesium porphyrins, chlorins and bacterio-
chlorins is a well-known fact [8, 45, 46], further reflected by
the high cost of these synthetic materials.

The stabilization of the zinc derivative is minor. The
energy needed for Zn2+ to be replaced by two protons is
lower that 1 kcal mol−1. This means that the application of
Zn-BChla into the tissues might result in the decomposition
of the complex into bacteriochlorophyll and the hydrated
zinc ion provided the Zn-BChla complex is labile.

The other metals are stable while inserted into bacterio-
chlorophyll cavity, with metal exchange energies being
larger than 15 kcal mol−1. The calculated energy exchange
allows to rank them in line with the increased predicted
stability: Cu < Co < Ru < Ni < Rh < Pd < Pt.

Traditionally, the stability of metal-substituted porphyrins
is defined by so-called “stability index” which is proportional
to Pauling electronegativity of an element and inversely pro-
portional to its effective ionic radius [44]. Although both
scales do not agree perfectly, the general trend is conserved.
Mg derivative is characterized by the lowest stability index
and Zn-BChla is the second least stable, the same as predicted
in the present paper. Platinum and palladium derivatives show
high stability, while copper and cobalt are in the range of
medium values. The largest discrepancy is found for nickel
adduct; it is characterized by the highest stability index, while
its exchange energy places it below Pd and Pt complexes.

In view of the potential applications of the studied metal-
bacteriochlorins for therapeutic purposes, the high stability of
Pt, Pd, Rh and Ru derivatives might be beneficial. These metal
ions are cytotoxic and thus their uncontrolled release in tissues
might result in more harm than is gained from their therapeutic
properties. On the other hand, if there is a way to release them
selectively in tumor cells, one may profit from their anti-cancer
activity in situ. Indeed, onemay imagine that after they serve as
photosensitizers in PDT, the large macrocyclic ligand might
undergo decomposition, e.g., upon irradiation or induced by
endogenous or exogenous factors. As a result, the therapeutic
metal ions would be released from bacteriochlorophyll “wrap”

Fig. 2 Linear relationship between UV–VIS absorption energy and
HOMO-LUMO gap
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and present in the exact place for their action through mecha-
nisms, which are proposed for their “standard” complexes.
This type of action, which would profit from these two aspects
of metallobacteriochlorophylls, might appear advantageous.
On the one hand the photophysical properties of the macrocy-
clic fragment would be in use during light irradiation phase and
on the second hand, their central metals might serve as thera-
peutic tools to fight with anomalous cells afterward.

Conclusions

The present study allowed for the structural characterization of
bacteriochlorophylls containing non-native divalent metal ions:
Co, Ni, Cu, Zn, Ru, Rh, Pd, and Pt. The main stress was put on
the derivatives with metals, which already found applications in
anti-tumor therapy in the form of other complexes, with an aim
to combine their properties with the known suitability of bac-
teriochlorophylls to photodynamic therapy. The performed
characterization of a wider group of species allowed for the
prediction of unknown properties of these promising agents.

The geometry structures of the studied species show the
surprising flexibility of bacteriochlorophyll cavity, which
manifests itself in an ability to accommodate metal ions of
different sizes.

The investigated species were also checked in view of
their stability in water. The test reaction, which was the
exchange of the central metal ion for two protons showed
that all studied metal–macrocycle adducts are stable in
aqueous media, except for Mg-BChla. The stability of Zn-
BChla would be minor and in real conditions would depend
mostly on the kinetics of its decomposition. The predicted
inertness of the synthetic derivatives with metals of anti-
tumor activity (Ru, Pt, Pd, Rh) might turn out beneficial for
therapeutic purposes. They are expected not to decompose
during the photodynamic therapy, while one may hopefully
control their decomposition in the second phase of a therapy.
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